Research
Barrett’s oesophagus
Barrett’s is the replacement of the normal squamous oesophageal epithelium with a columnar phenotype and is the major precursor condition of the development of oesophageal adenocarcinoma. All patients with Barrett’s undergo routine and lifelong endoscopic surveillance to detect cancer but the majority of patients never progress to cancer. There are no effective predictive biomarkers for cancer risk and we believe this is because we do not fully understand the evolution to cancer in this condition. My lab has two major CRUK-funded programmes to study different aspects of the progression to cancer. 1) Programme foundation awards to study the diversity of different Barrett’s oesophagus gland types and clonal evolution in the progression to cancer and response to treatment to predict dysplasia risk and therapeutic response. 2) Grand Challenge: To investigate how the stromal reprogramming can prevent and revert inflammation-associated cancers (STORMing Cancer team with Prof Thea Tlsty, University of California San Francisco). Specifically, my lab will study how the stroma changes over time in Barrett’s particularly in patients the progress to cancer.
Stem cells
Epithelial tumours, namely carcinomas, are responsible for >90% of all human malignancies, and intuitively we believe that most, if not all carcinomas, have their origins in normal adult stem cells.
Despite a great deal of work in animals, we are still largely ignorant about the nature and location of the stem cells in most epithelia. Thus, there is a great need for a robust technique to identify clonogenic cells and their descendants, particularly in human tissues.
Our laboratory has developed methods to identify clonal proliferative units in human epithelia, and we are now extending these studies to precisely identify the clonogenic cells, their location and nature (multipotential capacity), the cells that are the likely founders of much premalignant disease. We are currently working on the stem cell dynamics of Barrett’s oesophagus using next generation bisulphite sequencing and in the human liver using mitochondrial next generation sequencing, developing molecular clock models to determine stem cell dynamics.
Other interests focus around;
Barrett’s oesophagus
Barrett’s is the replacement of the normal squamous oesophageal epithelium with a columnar phenotype and is the major precursor condition of the development of oesophageal adenocarcinoma. All patients with Barrett’s undergo routine and lifelong endoscopic surveillance to detect cancer but the majority of patients never progress to cancer. There are no effective predictive biomarkers for cancer risk and we believe this is because we do not fully understand the evolution to cancer in this condition. My lab has two major CRUK-funded programmes to study different aspects of the progression to cancer. 1) Programme foundation awards to study the diversity of different Barrett’s oesophagus gland types and clonal evolution in the progression to cancer and response to treatment to predict dysplasia risk and therapeutic response. 2) Grand Challenge: To investigate how the stromal reprogramming can prevent and revert inflammation-associated cancers (STORMing Cancer team with Prof Thea Tlsty, University of California San Francisco). Specifically, my lab will study how the stroma changes over time in Barrett’s particularly in patients the progress to cancer.
Stem cells
Epithelial tumours, namely carcinomas, are responsible for >90% of all human malignancies, and intuitively we believe that most, if not all carcinomas, have their origins in normal adult stem cells.
Despite a great deal of work in animals, we are still largely ignorant about the nature and location of the stem cells in most epithelia. Thus, there is a great need for a robust technique to identify clonogenic cells and their descendants, particularly in human tissues.
Our laboratory has developed methods to identify clonal proliferative units in human epithelia, and we are now extending these studies to precisely identify the clonogenic cells, their location and nature (multipotential capacity), the cells that are the likely founders of much premalignant disease. We are currently working on the stem cell dynamics of Barrett’s oesophagus using next generation bisulphite sequencing and in the human liver using mitochondrial next generation sequencing, developing molecular clock models to determine stem cell dynamics.
Other interests focus around;
- The cellular origins of Barrett’s oesophagus
- Field cancerisation of the human stomach
- Clonal expansion in ductal carcinoma in situ of the human liver
- Evolution to cancer in intestinal metaplasias of the upper gastrointestinal system